Squares \& Square Roots

Square Root

Square Root

+ A number which, when multiplied by itself, results in another number.
$+E x: 5$ is the square root of 25.

$$
5=\sqrt{25}
$$

Vocabulary

- Radical: The expression \sqrt{s} is called a radical. The symbol $\sqrt{ }$ is a radical sign.
- Radicand: The number s beneath the radical sign.

Squares \& Square Roots

Perfect Squares

Square Number

- +Also called a "perfect square"

 + A number that is the square of a whole number +Can be represented by arranging objects in a square.

9

Square Numbers

MULTIPLICATION TABLE

	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	4	6	8	10	12	14	16	18
3	3	6	9	12	15	18	21	24	27
4	4	8	12	16	20	24	28	32	36
5	5	10	15	20	25	30	35	40	45
6	6	12	18	24	30	36	42	48	54
7	7	14	21	28	35	42	49	56	63
8	8	16	24	32	40	48	56	64	72
9	9	18	27	36	45	54	63	72	81

Square Numbers

$+1 \times 1=1$
$+2 \times 2=4$
$+3 \times 3=9$
$+4 \times 4=16$

Square Numbers

$+1 \times 1=1$
$+2 \times 2=4$
$+3 \times 3=9$
$+11 \times 11=121$
$+4 \times 4=16$
$+12 \times 12=144$
$+5 \times 5=25$
$+13 \times 13=169$
$+6 \times 6=36$
$+14 \times 14=196$
$+7 \times 7=49$
$+15 \times 15=225$
$+8 \times 8=64$

Activity:

Identify the following numbers as perfect squares or not.
i. 16 ii. 15
iii. 146
iv. 300
v. 324
vi. 729

Activity:

Identify the following numbers as perfect squares or not.

$$
\begin{aligned}
& \text { i. } \quad 16=4 \times 4 \\
& \text { ii. } 15
\end{aligned}
$$

iii. 146
iv. 300

$$
\begin{aligned}
& \text { v. } \quad 324=18 \times 18 \\
& \text { vi. } 729=27 \times 27
\end{aligned}
$$

Squares \& Square Roots

Estimating Square Root

Estimating Square Roots

Square roots of numbers that are not perfect squares, such as 15 , are not whole numbers. A calculator can approximate the value of $\sqrt{15}$ as 3.872983346... Without a calculator, you can use square roots of perfect squares to help estimate the square roots of other numbers.

REMEMBER...

If a whole number is not a perfect square, then its square root is irrational. For example, 2 is not a perfect square and $\sqrt{2}$ is irrational.

Estimating Square Roots

$\sqrt{25}=?$

Estimating Square Roots

$$
\sqrt{25}=5
$$

Estimating Square Roots

$\sqrt{36}=?$

Estimating Square Roots

$\sqrt{36}=6$

Estimating Square Roots

$\sqrt{27}=?$

Estimating Square Roots

$$
\sqrt{27}=?
$$

Since 27 is not a perfect square, we have to use another method to calculate it's square root.

$$
\begin{aligned}
& \text { Estimating } \\
& \text { Square Roots }
\end{aligned}
$$

\author{

+ Not all numbers are perfect squares.
}
+ Not every number has an Integer for a square root.
+We have to estimate square roots for numbers between perfect squares.

Estimating Square Roots

+ To calculate the square root of a non-perfect square

1. Place the values of the adjacent perfect squares on a number line.
2. Interpolate between the points to estimate to the nearest tenth.

Estimating Square Roots

+Example: $\sqrt{27}$

What are the perfect squares on each side of 27 ?

$5 \quad 5.5$
6

Estimating Square Roots

+ Example: $\sqrt{27}$
half

Estimate $\sqrt{27}=5.2$

Estimating Square Roots

+ Example: $\sqrt{27}$

+Estimate: $\sqrt{27}=5.2$
+Check: (5.2) (5.2) $=27.04$

