The $a^{2}+b^{2}=c^{2}$

b

This is a right triangle:

We call it a right triangle

 because it contains a right angle.
The measure of a right angle is 90°

The little square in the angle tells you it is a right angle.

About 2,500 years ago, a Greek mathematician named Pythagorus discovered a special relationship between the sides of right triangles.

Pythagorus realized that if you have a right triangle,

and you square the lengths of the two sides that make up the right angle,

$$
3^{2} 4^{2}
$$

and add them together,

$3^{2}+4^{2}$
you get the same number you would get by squaring the other side.

$3^{2}+4^{2}=5^{2}$

Is that correct?

$3^{2}+4^{2} \stackrel{?}{=} 5^{2}$

$$
9+16 \stackrel{?}{=} 25
$$

It is. And it is true for any right triangle.
 $6^{2}+8^{2}=10^{2}$
 8
 6

The two sides which come together in a right angle are called

The two sides which come together in a right angle are called legs

The lengths of the legs are usually called a and b.

The side across from the right angle is called the

 hypotenuse.

And the length of the hypotenuse
is usually labeled c.

The relationship Pythagorus discovered is now called The Pythagorean Theorem.

The Pythagorean Theorem

 says, given the right triangle with legs a and b and hypotenuse c,

then $a^{2}+b^{2}=c^{2}$.

You can use The Pythagorean Theorem to solve many kinds of problems.

48

Suppose you drive directly west for 48 miles,

Then you turn south and drive for 36 miles.

$$
36 \underset{ }{\square}
$$

How far are you from where you started?

Using The Pythagorean

 Theorem,$$
48^{2}+36^{2}=c^{2}
$$

Why?

Can you see that we have a right triangle?

$$
48^{2}+36^{2}=c^{2}
$$

48

$$
36
$$

36
c

Which sides are the legs? Which side is the hypotenuse?

Then all we need to do is calculate:

$48^{2}+36^{2}=2304+1296=$
$3600=c^{2}$

So, since c^{2} is $3600, c$ is 60.

 And you end up 60 miles from where you started. 48

Find the length of a

 diagonal of the rectangle:15"

Find the length of a diagonal of the rectangle:

15"

$$
a=15
$$

$a^{2}+b^{2}=c^{2}$

$$
\begin{aligned}
& 15^{2}+8^{2}=c^{2} \\
& 225+64=c^{2}
\end{aligned}
$$

$$
c^{2}=289
$$

$$
c=17
$$

Find the length of a diagonal of the rectangle:

15"

Practice using

The Pythagorean Theorem
to solve these right triangles:

b

$$
\begin{array}{cc}
& b=24 \\
a^{2}+b^{2}=c^{2} & \text { (c) } \\
10^{2}+b^{2}=26^{2} & \\
100+b^{2}=676 \\
b^{2}=676-100 & b=24 \\
b^{2}=576
\end{array}
$$

12

