## **Transformations**

- Translation
- Rotation
- Reflection
- Dilation

To <u>transform</u> something is to change it. In geometry, there are specific ways to describe how a figure is changed. The transformations you will learn about include:

- Translation
- Rotation
- Reflection
- Dilation



#### Renaming Transformations

It is common practice to name shapes using capital letters:



It is common practice
to name
transformed shapes
using the same
letters with a
"prime" symbol:



A translation "slides" an object a fixed distance in a given direction. The original object and its translation have the same shape and size, and they face in the same direction.

#### **Translations are <u>SLIDES</u>**.





Let's examine some translations related to coordinate geometry.

The example shows how each vertex moves the same distance in the same direction.



#### Write the Points

- What are the coordinates for A, B,C?
- What are the coordinates for A', B'.
  C'?
- How are they alike?
- How are they different?





In this example, the "slide" moves the figure 7 units to the left and 3 units down. (or 3 units down and 7 units to the left.)

#### **Write the Points**



- What are the coordinates for A, B, C?
- What are the coordinates for A', B', C'?
- How did the transformation change the points?

A **rotation** is a transformation that turns a figure about a fixed point called the center of rotation. An object and its rotation are the **same shape and size**, but the **figures may be turned in different directions.** 







The concept of rotations can be seen in wallpaper designs, fabrics, and art work.





Rotations are <u>TURNS</u>!!!

# This rotation is 90 degrees counterclockwise.







A **reflection** can be seen in water, in a mirror, in glass, or in a shiny surface. An object and its reflection have the **same shape and size**, but the **figures face in opposite directions**. In a mirror, for example, right and left are switched.



Original

line of reflection >>



**Image** 



#### Line reflections are FLIPS!!!





The line (where a mirror may be placed) is called the **line of reflection**. The distance from a point to the line of reflection is the same as the distance from the point's image to the line of reflection.

A reflection can be thought of as a "flipping" of an object over the line of reflection.



If you folded the two shapes together (line of reflection) the two shapes would overlap exactly!

## What happens to points in a Reflection?

- Name the points of the original triangle.
- Name the points of the reflected triangle.
- What is the line of reflection?
- How did the points change from the original to the reflection?



A **dilation** is a transformation that produces an image that is the **same shape** as the original, but is a **different size.** 

A dilation used to create an image **larger** than the original is called an **enlargement**. A dilation used to create an image **smaller** than the original is called a **reduction**.



#### **Dilations**

## Dilations always involve a change in size.



Notice how **EVERY** coordinate of the original triangle has been multiplied by the scale factor (x2).

**REVIEW**: Answer each question.....



Does this picture show a translation, rotation, dilation, or reflection?

How do you know?

**Rotation** 

Does this picture show a translation, rotation, dilation, or reflection?

How do you know?

**Dilation** 



Does this picture show a translation, rotation, dilation, or reflection? How do you know?



Which of the following lettered figures are translations of the shape of the purple arrow? Name ALL that apply.

#### Explain your thinking.



Letters a, c, and e are translations of the purple arrow.

### Has each picture been rotated in a **clockwise** or **counter-clockwise** direction?



The birds were rotated clockwise and the fish counterclockwise.

Basically, a tessellation is a way to tile a floor (that goes on forever) with shapes so that there is no overlapping and no gaps.



Dutch graphic artist M. C. Escher (1898-1972) is known for his creative use of tessellations in his work. What **transformations** can you see in this picture?



The birds and fish have been translated here.



#### What transformations can you see in this Escher print?

Some birds have been translated and some have been rotated.

## Can you name examples in real life of each transformation?

- Translation
- Rotation
- Reflection
- Dilation

#### Check out these sites:

http://www.farraguttn.com/fhs/math/nctm/index.htm

http://www.mathsnet.net/transformations/index.html

http://www.mcescher.com/