Volume of Prisms, Pyramids, \& Spheres

Volume of Prisms

Rectangular Prism

Triangular Prism

Volume (V) of a Prism

Volume Formula

$$
V=B h
$$

$V=$ Volume
$B=$ Area of the Base $h=$ Height of the Figure

Volume (V) of a Prism

Volume Formula

$$
\begin{aligned}
& V=B h \\
& V=40(17) \\
& V=680 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& B=b h \\
& B=10(4) \\
& B=40 \mathrm{~cm}^{2} \\
& h=17 \mathrm{~cm}
\end{aligned}
$$

Volume (V) of a Prism

Try this one...

Volume (V) of a Prism

Volume Formula

$$
\begin{aligned}
V & =B h \\
V & =12(12) \\
V & =144 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& B=\frac{1}{2} b h \\
& B=\frac{1}{2}(4)(6) \\
& B=12 \mathrm{~cm}^{2} \\
& h=12 \mathrm{~cm}
\end{aligned}
$$

Volume (V) of a Prism

Try this one...

Volume (V) of a Prism

Volume Formula

$$
\begin{aligned}
V & =B h \\
V & =20(7) \\
V & =140 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& B=b h \\
& B=4(5) \\
& B=20 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
h=7 \mathrm{~cm}
$$

Volume (V) of a Prism

Try this one...

Volume (V) of a Prism

Volume Formula

$$
\begin{aligned}
V & =B h \\
V & =12(12) \\
V & =144 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& B=\frac{1}{2} b h \\
& B=\frac{1}{2}(8)(3) \\
& B=12 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
h=12 \mathrm{~cm}
$$

Volume (V) of a Cylinder

Volume (V) of a Cylinder

Volume Formula

$$
\begin{aligned}
& V=B h \\
& V=78.5(10) \\
& V=785 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& B=\pi r^{2} \\
& B=3.14(5)^{2} \\
& B=3.14(25) \\
& B=78.5 \mathrm{~cm}^{2} \\
& h=10 \mathrm{~cm}
\end{aligned}
$$

Volume (V) of a Cylinder

Try this one...

Volume (V) of a Cylinder

Volume Formula

$$
\begin{aligned}
& V=B h \\
& V=50.24(10) \\
& V=502.4 \mathrm{in}^{3}
\end{aligned}
$$

$B=\pi r^{2}$
$B=3.14(4)^{2}$
$B=3.14(16)$
$B=50.24$ in 2
$h=10$ in

Remember, Volume of a Prism is $V=B h$ where B is the area of the base.

You can see that the Volume of a Pyramid will be less than that of a Prism.

How much less? Any guesses?

Volume (V) of a Pyramid

Volume Formula

$$
\begin{aligned}
V & =\frac{1}{3} B h \\
V & =\frac{1}{3}(256)(24) \\
V & =2048 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& B=b h \\
& B=16(16) \\
& B=256 \text { units }^{2}
\end{aligned}
$$

$h=24$ units

Volume (V) of a Pyramid

Try this one...

Volume (V) of a Pyramid

Volume Formula

$$
\begin{aligned}
V & =\frac{1}{3} B h \\
V & =\frac{1}{3}(56)(12) \\
V & =224 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& B=b h \\
& B=7(8)
\end{aligned}
$$

$$
B=56 \mathrm{~cm}^{2}
$$

$$
h=12 \mathrm{~cm}
$$

Volume (V) of a Cone

Volume Formula

$$
\begin{aligned}
V & =\frac{1}{3} B h \\
V & =\frac{1}{3}(28.26)(7) \\
V & =65.94 \mathrm{~mm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& B=\pi r^{2} \\
& B=3.14(3)^{2} \\
& B=3.14(9) \\
& B=28.26 \mathrm{~mm}^{2} \\
& h=7 \mathrm{~mm}
\end{aligned}
$$

Volume (V) of a Cone

Try this one...

Volume (V) of a Cone

Volume Formula

$$
\begin{aligned}
V & =\frac{1}{3} B h \\
V & =\frac{1}{3}(78.5)(12) \\
V & =314 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume (V) of a Sphere

Volume Formula

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
V & =\frac{4}{3}(3.14)(5)^{3} \\
V & =523.33 \mathrm{~cm}^{3}
\end{aligned}
$$

Substitute!! $d=10 \mathrm{~cm}$

Volume (V) of a Sphere

Volume (V) of a Sphere

Volume Formula

$$
\begin{array}{ll}
V=\frac{4}{3} \pi r^{3} \\
V=\frac{4}{3}(3.14)(3.5)^{3} & \text { substitute!! } \quad \begin{array}{l}
d=7 \mathrm{~cm} \\
r=3.5 \mathrm{~cm}
\end{array} \\
V=179.503 \mathrm{~cm}^{3} &
\end{array}
$$

